Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 668
Filtrar
1.
Mar Drugs ; 22(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38535460

RESUMO

The genus Gambierdiscus produces an array of bioactive hydrophilic and lipophilic secondary metabolites that range in mode of action and toxicity. In this study, the metabolite fingerprint was mapped for thirteen Gambierdiscus, five Coolia and two Fukuyoa species (34 isolates) by assessing the production of 56 characterised secondary metabolites. Gambierdiscus polynesiensis was the only species to produce Pacific-ciguatoxin-3B (P-CTX3B), P-CTX3C, iso-P-CTX3B/C, P-CTX4A, P-CTX4B and iso-P-CTX4A/B. G. australes produced maitotoxin-1 (MTX-1) and MTX-5, G. cheloniae produced MTX-6 and G. honu produced MTX-7. Ubiquitous production of 44-methylgambierone was observed amongst all the Gambierdiscus isolates, with nine species also producing gambierone. Additional gambierone analogues, including anhydrogambierone (tentatively described herein), were also detected in all Gambierdiscus species, two Coolia and two Fukuyoa species. Gambieroxide was detected in G. lewisii and G. pacificus and gambieric acid A was detected in ten Gambierdiscus species, with G. australes (CAWD381) being the only isolate to produce gambieric acids A-D. This study has demonstrated that the isolates tested to date produce the known CTXs or MTXs, but not both, and highlighted several species that produced 'unknown' compounds displaying characteristics of cyclic polyethers, which will be the focus of future compound discovery efforts.


Assuntos
Ciguatoxinas , Dinoflagelados , Éteres , Sorogrupo
2.
Toxins (Basel) ; 16(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535783

RESUMO

Ciguatoxins (CTXs) are neurotoxins responsible for ciguatera poisoning (CP), which affects more than 50,000 people worldwide annually. The development of analytical methods to prevent CP is a pressing global issue, and the N2a assay is one of the most promising methods for detecting CTXs. CTXs are highly toxic, and an action level of 0.01 µg CTX1B equivalent (eq)/kg in fish has been proposed. It is desirable to further increase the detection sensitivity of CTXs in the N2a assay to detect such low concentrations reliably. The opening of voltage-gated sodium channels (NaV channels) and blocking of voltage-gated potassium channels (KV channels) are thought to be involved in the toxicity of CTXs. Therefore, in this study, we developed an assay that could detect CTXs with higher sensitivity than conventional N2a assays, using KV channel inhibitors as sensitizing reagents for N2a cells. The addition of the KV channel inhibitors 4-aminopyridine and tetraethylammonium chloride to N2a cells, in addition to the traditional sensitizing reagents ouabain and veratridine, increased the sensitivity of N2a cells to CTXs by up to approximately 4-fold. This is also the first study to demonstrate the influence of KV channels on the toxicity of CTXs in a cell-based assay.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Neuroblastoma , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Humanos , Animais , Aminopiridinas
3.
Toxins (Basel) ; 16(2)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38393167

RESUMO

Ciguatoxins (CTXs) stand as the primary toxins causing ciguatera fish poisoning (CFP) and are essential compounds distinguished by their characteristic polycyclic ether structure. In a previous report, we identified the structures of product ions generated via homolytic fragmentation by assuming three charge sites in the mass spectrometry (MS)/MS spectrum of ciguatoxin-3C (CTX3C) using LC-MS. This study aims to elucidate the homolytic fragmentation of a ciguatoxin-3C congener. We assigned detailed structures of the product ions in the MS/MS spectrum of a naturally occurring ciguatoxin-3C congener, 51-hydroxyciguatoxin-3C (51-hydoxyCTX3C), employing liquid chromatography/quadrupole time-of-flight mass spectrometry with an atmospheric pressure chemical ionization (APCI) source. The introduction of a hydroxy substituent on C51 induced different fragmentation pathways, including a novel cleavage mechanism of the M ring involving the elimination of 51-OH and the formation of enol ether. Consequently, new cleavage patterns generated product ions at m/z 979 (C55H79O15), 439 (C24H39O7), 149 (C10H13O), 135 (C9H11O), and 115 (C6H11O2). Additionally, characteristic product ions were observed at m/z 509 (C28H45O8), 491 (C28H43O7), 481 (C26H41O8), 463 (C26H39O7), 439 (C24H39O7), 421 (C24H37O6), 171 (C9H15O3), 153 (C9H13O2), 141 (C8H13O2), and 123 (C8H11O).


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Animais , Ciguatoxinas/análise , Espectrometria de Massas em Tandem/métodos , Intoxicação por Ciguatera/etiologia , Íons
4.
Toxins (Basel) ; 16(1)2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276536

RESUMO

Ciguatera, a global issue, lacks adequate capacity for ciguatoxin analysis in most affected countries. The Caribbean region, known for its endemic ciguatera and being home to a majority of the global small island developing states, particularly needs established methods for ciguatoxin detection in seafood and the environment. The radioligand receptor binding assay (r-RBA) is among the in vitro bioassays currently used for ciguatoxin analysis; however, similarly to the other chemical-based or bioassays that have been developed, it faces challenges due to limited standards and interlaboratory comparisons. This work presents a single laboratory validation of an r-RBA developed in a Cuban laboratory while characterizing the performance of the liquid scintillation counter instrument as a key external parameter. The results obtained show the assay is precise, accurate and robust, confirming its potential as a routine screening method for the detection and quantification of ciguatoxins. The new method will aid in identifying high-risk ciguatoxic fish in Cuba and the Caribbean region, supporting monitoring and scientific management of ciguatera and the development of early warning systems to enhance food safety and food security, and promote fair trade fisheries.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Animais , Ciguatoxinas/análise , Intoxicação por Ciguatera/diagnóstico , Peixes , Ligação Proteica , Bioensaio
5.
Harmful Algae ; 131: 102562, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38212087

RESUMO

Ciguatera Poisoning (CP) is a widespread and complex poisoning syndrome caused by the consumption of fish or invertebrates contaminated with a suite of potent neurotoxins collectively known as ciguatoxins (CTXs), which are produced by certain benthic dinoflagellates species in the genera Gambierdiscus and Fukuyoa. Due to the complex nature of this HAB problem, along with a poor understanding of toxin production and entry in the coral reef food web, the development of monitoring, management, and forecasting approaches for CP has lagged behind those available for other HAB syndromes. Over the past two decades, renewed research on the taxonomy, physiology, and toxicology of CP-causing dinoflagellates has advanced our understanding of the species diversity that exists within these genera, including identification of highly toxic species (so called "superbugs") that likely contribute disproportionately to ciguatoxins entering coral reef food webs. The recent development of approaches for molecular analysis of field samples now provide the means to investigate in situ community composition, enabling characterization of spatio-temporal species dynamics, linkages between toxic species abundance and toxin flux, and the risk of ciguatoxin prevalence in fish. In this study we used species-specific fluorescent in situ hybridization (FISH) probes to investigate Gambierdiscus species composition and dynamics in St. Thomas (USVI) and the Florida Keys (USA) over multiple years (2018-2020). Within each location, samples were collected seasonally from several sites comprising varying depths, habitats, and algal substrates to characterize community structure over small spatial scales and across different host macrophytes. This approach enabled the quantitative determination of communities over spatiotemporal gradients, as well as the selective enumeration of species known to exhibit high toxicity, such as Gambierdiscus silvae. The investigation found differing community structure between St. Thomas and Florida Keys sites, driven in part by differences in the distribution of toxin-producing species G. silvae and G. belizeanus, which were present throughout sampling sites in St. Thomas but scarce or absent in the Florida Keys. This finding is significant given the high toxicity of G. silvae, and may help explain differences in fish toxicity and CP incidence between St. Thomas and Florida. Intrasite comparisons along a depth gradient found higher concentrations of Gambierdiscus spp. at deeper locations. Among the macrophytes sampled, Dictyota may be a likely vector for toxin transfer based on their widespread distribution, apparent colonization by G. silvae, and palatability to at least some herbivore grazers. Given its ubiquity throughout both study regions and sites, this taxa may also serve as a refuge, accumulating high concentrations of Gambierdiscus and other benthic dinoflagellates, which in turn can serve as source populations for highly palatable and ephemeral habitats nearby, such as turf algae. These studies further demonstrate the successful application of FISH probes in examining biogeographic structuring of Gambierdiscus communities, targeting individual toxin-producing species, and characterizing species-level dynamics that are needed to describe and model ecological drivers of species abundance and toxicity.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Ciguatoxinas/toxicidade , Florida , Hibridização in Situ Fluorescente , Ilhas Virgens Americanas
6.
Harmful Algae ; 131: 102561, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38212086

RESUMO

Ciguatera poisoning (CP) is the most common form of phycotoxin-borne seafood poisoning globally, affecting thousands of people on an annual basis. It most commonly occurs in residential fish of coral reefs, which consume toxin-laden algae, detritus, and reef animals. The class of toxins that cause CP, ciguatoxins (CTXs), originate in benthic, epiphytic dinoflagellates of the genera, Gambierdiscus and Fukuyoa, which are consumed by herbivores and detritivores that facilitate food web transfer. A number of factors have hindered adequate environmental monitoring and seafood surveillance for ciguatera including the low concentrations in which the toxins are found in seafood causing illness (sub-ppb), a lack of knowledge on the toxicity equivalence of other CTXs and contribution of other benthic algal toxins to the disease, and the limited availability of quantified toxin standards and reference materials. While progress has been made on the identification of the dinoflagellate taxa and toxins responsible for CP, more effort is needed to better understand the dynamics of toxin transfer into reef food webs in order to implement a practical monitoring program for CP. Here, we present a conceptual model that utilizes empirical field data (temperature, Gambierdiscus cell densities, macrophyte cover) in concert with other published studies (grazing rates and preference) to produce modeling outputs that suggest approaches that may be beneficial to developing monitoring programs: 1) targeting specific macrophytes for Gambierdiscus and toxin measurements to monitor toxin levels at the base of the food web (i.e., toxin loading); and 2) adjusting these targets across sites and over seasons. Coupling this approach with other methodologies being incorporated into monitoring programs (artificial substrates; FISH probes; toxin screening) may provide an "early warning" system to develop strategic responses to potential CP flare ups in the future.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Humanos , Animais , Ciguatoxinas/toxicidade , Região do Caribe , Monitoramento Ambiental/métodos
7.
Toxicon ; 237: 107536, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043714

RESUMO

Ciguatera poisoning (CP) is endemic to several subtropical and tropical regions and is caused by the consumption of fish contaminated with ciguatoxins (CTXs). The recent discovery of Caribbean CTXs (C-CTXs) in Gambierdiscus spp. isolated from the Caribbean resulted in the identification of a precursor analogue, C-CTX5, that is reduced into C-CTX1. C-CTX5 has two reducible sites, a ketone at C-3 and hemiketal at C-56. Chemical reductions of C-CTX5 into C-CTX3/4 resulted in two peaks in the LC-HRMS chromatograms with a ratio that differed markedly from that observed in fish extracts and the reduction of C-CTX1 isolated from fish. Reduction of C-CTX5 should have produced four diastereoisomers of C-CTX3/4, prompting a more detailed study of the reduction products. LC-HRMS with a slow gradient was used to separate and detect the four stereoisomers of C-CTX3/4, and to determine the distribution of these analogues in naturally contaminated fish tissues and following chemical reduction of isolated analogues. The results showed that in naturally contaminated fish tissues C-CTX1/2 is a mixture of two diastereoisomers at C-3 and that C-CTX3/4 is a mixture of two pairs of diastereoisomers at C-3 and C-56. The data suggests that there is variability in the enzymatic reduction at C-3 and C-56 of C-CTXs in reef fish, leading to variations in the ratios of the four stereoisomers. Based on these findings, a naming convention for C-CTXs is proposed which aligns with that used for Pacific CTX congeners and will aid in the identification of the structure and stereochemistry of the different CTX analogues.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Animais , Ciguatoxinas/toxicidade , Ciguatoxinas/química , Intoxicação por Ciguatera/epidemiologia , Peixes , Região do Caribe , Dinoflagelados/química
8.
Harmful Algae ; 130: 102524, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38061817

RESUMO

Benthic dinoflagellates that can cause illness, such as ciguatera poisoning (CP), are prevalent around the Pacific but are poorly described in many locations. This study represents the first ecological assessment of benthic harmful algae species in the Kingdom of Tonga, a country where CP occurs regularly. Surveys were conducted in June 2016 in the Tongatapu island group, and in June 2017 across three island groups: Ha'apai, Vava'u, and Tongatapu. Shallow subtidal coastal habitats were investigated by measuring water quality parameters and conducting quadrat surveys. Microalgae samples were collected using either macrophyte collection or the artificial substrate method. Benthic dinoflagellates (Gambierdiscus and/or Fukuyoa, Ostreopsis, and Prorocentrum) were counted using light microscopy, followed by molecular analyses (real-time PCR in 2016 and high throughput sequencing (metabarcoding) in 2017) to identify Gambierdiscus and Fukuyoa to species level. Six species were detected from the Tongatapu island group in 2016 (G. australes, G. carpenteri, G. honu, G. pacificus, F. paulensis, and F. ruetzleri) using real-time PCR. Using the metabarcoding approach in 2017, a total of eight species (G. australes, G. carpenteri, G. honu, G. pacificus, G. cheloniae, G. lewisii, G. polynesiensis, and F. yasumotoi) were detected. Species were detected in mixed assemblages of up to six species, with G. pacificus and G. carpenteri being the most frequently observed. Ha'apai had the highest diversity with eight species detected, which identifies this area as a Gambierdiscus diversity 'hotspot'. Vava'u and Tongatapu had three and six species found respectively. Gambierdiscus polynesiensis, a described ciguatoxin producer and proposed causative agent of CP was found only in Ha'apai and Vava'u in 2017, but not in Tongatapu in either year. Ostreopsis spp. and Prorocentrum spp. were also frequently observed, with Prorocentrum most abundant at the majority of sites. In 2016, the highest number of Gambierdiscus and/or Fukuyoa cells were observed on seagrass (Halodule uninervis) from Sopu, Tongatapu. In 2017, the highest numbers of Gambierdiscus and/or Fukuyoa from artificial substrate samples were recorded in the Halimeda dominant habitat at Neiafu Tahi, Vava'u, a low energy site. This raised the question of the effect of wave motion or currents on abundance measurements from artificial substrates. Differences in detection were noticed between macrophytes and artificial substrates, with higher numbers of species found on artificial substrates. This study provides a baseline of benthic dinoflagellate distributions and diversity for Tonga that may be used for future studies and the development of monitoring programmes.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Dinoflagelados/química , Tonga
9.
Artigo em Inglês | MEDLINE | ID: mdl-37968064

RESUMO

An outbreak of food poisoning of unknown origin was notified to Central Queensland Public Health Unit on 9 December 2021. The bulk carrier sailing from Higashiharima, Japan to Gladstone, Australia reported an incident of sudden illness, with 19 out of 20 sailors on board reporting a combination of gastrointestinal and neurological symptoms. Central Queensland Public Health Unit started the outbreak investigation as per Queensland Health public health management guidelines. All 20 of the sailors consumed a self-caught barracuda and squid, prepared by the ship's cook, the day before. Unconsumed samples of the fish and squid were sent for testing. The affected sailors were triaged on arrival and were provided with medical care as required. The barracuda sample contained ciguatoxins (CTXs; P-CTX-1, P-CTX-2, P-CTX-3) with a total count of 3.40 ug/kg confirming the diagnosis. We propose the usage of the combination of gastrointestinal symptoms and paraesthesia in the light of a recent intoxication event for early detection of ciguatera poisoning (CP) in the eastern seaboard of Australia.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Animais , Humanos , Intoxicação por Ciguatera/diagnóstico , Intoxicação por Ciguatera/epidemiologia , Austrália/epidemiologia , Surtos de Doenças/prevenção & controle , Diagnóstico Precoce
10.
Chem Res Toxicol ; 36(12): 1990-2000, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37965843

RESUMO

Emerging marine biotoxins such as ciguatoxins and brevetoxins have been widely and independently studied as food pollutants. Their maximum levels in food components were set without considering their possible synergistic effects as consequence of their coexistence in seafood and their action at the same cellular target. The absolute lack of data and regulations of the possible combined effects that both marine biotoxins may have raised the need to analyze their direct in vitro effects using electrophysiology techniques. The results presented in this study indicate that ciguatoxins and brevetoxins had a synergistic effect on human Nav1.6 voltage-gated sodium channels by hyperpolarizing their activation and inactivation states. The results presented here indicate that brevetoxin 3 (BTX-3) acts as partial agonist of human sodium channels, while ciguatoxin 3C (CTX3C) was a full agonist, explaining the differences in the effect of each toxin in the channel. Therefore, this work sets the cellular basis to further apply this type of studies to other food toxicants that may act synergistically and thus implement the corresponding regulatory limits considering their coexistence and the risks to human and animal health derived from it.


Assuntos
Ciguatoxinas , Canais de Sódio Disparados por Voltagem , Animais , Humanos , Ciguatoxinas/farmacologia , Toxinas Marinhas/farmacologia
11.
Harmful Algae ; 129: 102525, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951623

RESUMO

Ciguatera Poisoning (CP) is a seafood poisoning highly prevalent in French Polynesia. This illness results from the consumption of seafood contaminated with ciguatoxins (CTXs) produced by Gambierdiscus, a benthic dinoflagellate. Ciguatera significantly degrades the health and economic well-being of local communities largely dependent on reef fisheries for their subsistence. French Polynesia has been the site of rich and active CP research since the 1960's. The environmental, toxicological, and epidemiological data obtained in the frame of large-scale field surveys and a country-wide CP case reporting program conducted over the past three decades in the five island groups of French Polynesia are reviewed. Results show toxin production in Gambierdiscus in the natural environment may vary considerably at a temporal and spatial scale, and that several locales clearly represent Gambierdiscus spp. "biodiversity hotspots". Current data also suggest the "hot" species G. polynesiensis could be the primary source of CTXs in local ciguateric biotopes, pending formal confirmation. The prevalence of ciguatoxic fish and the CTX levels observed in several locales were remarkably high, with herbivores and omnivores often as toxic as carnivores. Results also confirm the strong local influence of Gambierdiscus spp. on the CTX toxin profiles characterized across multiple food web components including in CP-prone marine invertebrates. The statistics, obtained in the frame of a long-term epidemiological surveillance program established in 2007, point towards an apparent decline in the number of CP cases in French Polynesia as a whole; however, incidence rates remain dangerously high in some islands. Several of the challenges and opportunities, most notably those linked to the strong cultural ramifications of CP among local communities, that need to be considered to define effective risk management strategies are addressed.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Animais , Humanos , Intoxicação por Ciguatera/epidemiologia , Cadeia Alimentar , Ciguatoxinas/toxicidade , Polinésia/epidemiologia
12.
Mar Drugs ; 21(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37999414

RESUMO

The growing concern about ciguatera fish poisoning (CF) due to the expansion of the microorganisms producing ciguatoxins (CTXs) increased the need to develop a reliable and fast method for ciguatoxin detection to guarantee food safety. Cytotoxicity assay on the N2a cells sensitized with ouabain (O) and veratridine (V) is routinely used in ciguatoxin detection; however, this method has not been standardized yet. This study demonstrated the low availability of sodium channels in the N2a cells, the great O/V damage to the cells and the cell detachment when the cell viability is evaluated by the classical cytotoxicity assay and confirmed the absence of toxic effects caused by CTXs alone when using the methods that do not require medium removal such as lactate dehydrogenase (LDH) and Alamar blue assays. Different cell lines were evaluated as alternatives, such as human neuroblastoma, which was not suitable for the CTX detection due to the greater sensitivity to O/V and low availability of sodium channels. However, the HEK293 Nav cell line expressing the α1.6 subunit of sodium channels was sensitive to the ciguatoxin without the sensitization with O/V due to its expression of sodium channels. In the case of sensitizing the cells with O/V, it was possible to detect the presence of the ciguatoxin by the classical cytotoxicity MTT method at concentrations as low as 0.0001 nM CTX3C, providing an alternative cell line for the detection of compounds that act on the sodium channels.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Neuroblastoma , Camundongos , Animais , Humanos , Ciguatoxinas/toxicidade , Células HEK293 , Canais de Sódio/metabolismo
13.
Toxins (Basel) ; 15(11)2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37999493

RESUMO

The first ciguatera fish poisoning (CFP) in Portugal dates from 2008 when 11 people reported CFP symptoms after consuming a 30 kg amberjack caught around the Selvagens Islands (Madeira Archipelago). Since then, 49 human poisonings have been reported. The emergence of a new threat challenged scientists and regulators, as methods for toxic microalgae analyses and ciguatoxin (CTX) detection were not implemented. To minimise the risk of ciguatera, the Madeira Archipelago authorities interdicted fisheries in Selvagens Islands and banned the capture of amberjacks weighing more than 10 kg in the entire region of Madeira Archipelago. The accurate identification and quantification of the benthic toxin-producing algae species spreading to new areas require efforts in terms of both microscopy and molecular techniques. Two ciguatera-causing dinoflagellates, Gambierdiscus excentricus and Gambierdiscus australes, were identified in the Madeira Island and Selvagens sub-archipelago, respectively. Regarding the CTX analysis (N2a cell-based assay and LC-MS) in fish, the results indicate that the Selvagens Islands are a ciguatera risk area and that fish vectoring CTX are not limited to top predator species. Nevertheless, advances and improvements in screening methods for the fast detection of toxicity in seafood along with certified reference material and sensitive and selective targeted analytical methods for the determination of CTX content are still pending. This study aims to revise the occurrence of ciguatera cases in the Madeira Archipelago since its first detection in 2008, to discuss the risk management strategy that was implemented, and to provide a summary of the available data on the bioaccumulation of CTX in marine fish throughout the marine food web, taking into consideration their ecological significance, ecosystem dynamics, and fisheries relevance.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Animais , Humanos , Intoxicação por Ciguatera/epidemiologia , Portugal/epidemiologia , Ecossistema , Estudos Retrospectivos , Ciguatoxinas/toxicidade , Ciguatoxinas/análise , Peixes
14.
Toxins (Basel) ; 15(11)2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37999520

RESUMO

Microbial interactions including competition, mutualism, commensalism, parasitism, and predation, which can be triggered by nutrient acquisition and chemical communication, are universal phenomena in the marine ecosystem. The interactions may influence the microbial population density, metabolism, and even their environmental functions. Herein, we investigated the interaction between a heterotrophic bicosoecid flagellate, Pseudobodo sp. (Bicoecea), and a dinoflagellate, Gambierdiscus balechii (Dinophyceae), which is a well-known ciguatera food poisoning (CFP) culprit. The presence of Pseudobodo sp. inhibited the algal proliferation and decreased the cardiotoxicity of zebrafish in the algal extract exposure experiment. Moreover, a significant difference in microbiome abundance was observed in algal cultures with and without Pseudobodo sp. Chemical analysis targeting toxins was performed by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with molecular networking (MN), showing a significant alteration in the cellular production of gambierone analogs and some super-carbon chain compounds. Taken together, our results demonstrated the impact of heterotrophic flagellate on the photosynthetic dinoflagellates, revealing the complex dynamics of algal toxin production and the ecological relationships related to dinoflagellates in the marine environment.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Animais , Dinoflagelados/metabolismo , Cromatografia Líquida , Ecossistema , Peixe-Zebra , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Ciguatoxinas/toxicidade
15.
Toxins (Basel) ; 15(7)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37505722

RESUMO

Ciguatera is a major circumtropical poisoning caused by the consumption of marine fish and invertebrates contaminated with ciguatoxins (CTXs): neurotoxins produced by endemic and benthic dinoflagellates which are biotransformed in the fish food-web. We provide a history of ciguatera research conducted over the past 70 years on ciguatoxins from the Pacific Ocean (P-CTXs) and Caribbean Sea (C-CTXs) and describe their main chemical, biochemical, and toxicological properties. Currently, there is no official method for the extraction and quantification of ciguatoxins, regardless their origin, mainly due to limited CTX-certified reference materials. In this review, the extraction and purification procedures of C-CTXs are investigated, considering specific objectives such as isolating reference materials, analysing fish toxin profiles, or ensuring food safety control. Certain in vitro assays may provide sufficient sensitivity to detect C-CTXs at sub-ppb levels in fish, but they do not allow for individual identification of CTXs. Recent advances in analysis using liquid chromatography coupled with low- or high-resolution mass spectrometry provide new opportunities to identify known C-CTXs, to gain structural insights into new analogues, and to quantify C-CTXs. Together, these methods reveal that ciguatera arises from a multiplicity of CTXs, although one major form (C-CTX-1) seems to dominate. However, questions arise regarding the abundance and instability of certain C-CTXs, which are further complicated by the wide array of CTX-producing dinoflagellates and fish vectors. Further research is needed to assess the toxic potential of the new C-CTX and their role in ciguatera fish poisoning. With the identification of C-CTXs in the coastal USA and Eastern Atlantic Ocean, the investigation of ciguatera fish poisoning is now a truly global effort.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Animais , Intoxicação por Ciguatera/epidemiologia , Ciguatoxinas/análise , Saúde Pública , Peixes , Dinoflagelados/química , Região do Caribe
16.
Toxicon ; 230: 107161, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37201801

RESUMO

Ciguatera fish poisoning (CFP) is a foodborne illness affecting > 50,000 people worldwide annually. It is caused by eating marine invertebrates and fish that have accumulated ciguatoxins (CTXs). Recently, the risk of CFP to human health, the local economy, and fishery resources have increased; therefore, detection methods are urgently needed. Functional assays for detecting ciguatoxins in fish include receptor binding (RBA) and neuroblastoma cell-based assay (N2a assay), which can detect all CTX congeners. In this study, we made these assays easier to use. For RBA, an assay was developed using a novel near-infrared fluorescent ligand, PREX710-BTX, to save valuable CTXs. In the N2a assay, a 1-day assay was developed with the same detection performance as the conventional 2-day assay. Additionally, in these assays, we used calibrated CTX standards from the Pacific determined by quantitative NMR for the first time to compare the relative potency of congeners, which differed significantly among previous studies. In the RBA, there was almost no difference in the binding affinity among congeners, showing that the differences in side chains, stereochemistry, and backbone structure of CTXs did not affect the binding affinity. However, this result did not correlate with the toxic equivalency factors (TEFs) based on acute toxicity in mice. In contrast, the N2a assay showed a good correlation with TEFs based on acute toxicity in mice, except for CTX3C. These findings, obtained with calibrated toxin standards, provide important insights into evaluating the total toxicity of CTXs using functional assays.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Neuroblastoma , Camundongos , Humanos , Animais , Ciguatoxinas/toxicidade , Ligação Proteica , Peixes
17.
Mar Drugs ; 21(4)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37103383

RESUMO

Tropical epibenthic dinoflagellate communities produce a plethora of bioactive secondary metabolites, including the toxins ciguatoxins (CTXs) and potentially gambierones, that can contaminate fishes, leading to ciguatera poisoning (CP) when consumed by humans. Many studies have assessed the cellular toxicity of causative dinoflagellate species to better understand the dynamics of CP outbreaks. However, few studies have explored extracellular toxin pools which may also enter the food web, including through alternative and unanticipated routes of exposure. Additionally, the extracellular exhibition of toxins would suggest an ecological function and may prove important to the ecology of the CP-associated dinoflagellate species. In this study, semi-purified extracts obtained from the media of a Coolia palmyrensis strain (DISL57) isolated from the U.S. Virgin Islands were assessed for bioactivity via a sodium channel specific mouse neuroblastoma cell viability assay and associated metabolites evaluated by targeted and non-targeted liquid chromatography tandem and high-resolution mass spectrometry. We found that extracts of C. palmyrensis media exhibit both veratrine enhancing bioactivity and non-specific bioactivity. LC-HR-MS analysis of the same extract fractions identified gambierone and multiple undescribed peaks with mass spectral characteristics suggestive of structural similarities to polyether compounds. These findings implicate C. palmyrensis as a potential contributor to CP and highlight extracellular toxin pools as a potentially significant source of toxins that may enter the food web through multiple exposure pathways.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Toxinas Biológicas , Animais , Camundongos , Humanos , Dinoflagelados/química , Ciguatoxinas/toxicidade
18.
Chemosphere ; 330: 138659, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37044143

RESUMO

Ciguatera poisoning (CP) is a severe seafood-borne disease, caused by the consumption of reef fish contaminated with Caribbean ciguatoxins (C-CTXs) in the Caribbean and tropical Atlantic. However, C-CTXs have not been identified from their presumed algal source, so the relationship to the CTXs in fish causing illness remains unknown. This has hindered the development of detection methods, diagnostics, monitoring programs, and limited fundamental knowledge on the environmental factors that regulate C-CTX production. In this study, in vitro and chemical techniques were applied to unambiguously identify a novel C-CTX analogue, C-CTX5, from Gambierdiscus silvae and Gambierdiscus caribaeus strains from the Caribbean. Metabolism in vitro by fish liver microsomes converted algal C-CTX5 into C-CTX1/2, the dominant CTX in ciguatoxic fish from the Caribbean. Furthermore, C-CTX5 from G. silvae was confirmed to have voltage-gated sodium-channel-specific activity. This finding is crucial for risk assessment, understanding the fate of C-CTXs in food webs, and is a prerequisite for development of effective analytical methods and monitoring programs. The identification of an algal precursor produced by two Gambierdiscus species is a major breakthrough for ciguatera research that will foster major advances in this important seafood safety issue.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Animais , Ciguatoxinas/toxicidade , Região do Caribe , Peixes
19.
Environ Res ; 228: 115869, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37044166

RESUMO

Ciguatoxins (CTXs) are marine neurotoxins that cause ciguatera poisoning (CP), mainly through the consumption of fish. The distribution of CTXs in fish is known to be unequal. Studies have shown that viscera accumulate more toxins than muscle, but little has been conducted on toxicity distribution in the flesh, which is the main edible part of fish, and the caudal muscle is also most commonly targeted for the monitoring of CTXs in the Canary Islands. At present, whether this sample is representative of the toxicity of an individual is undisclosed. This study aims to assess the distribution of CTXs in fish, considering different muscle samples, the liver, and gonads. To this end, tissues from four amberjacks (Seriola spp.) and four dusky groupers (Epinephelus marginatus), over 16.5 kg and captured in the Canary Islands, were analyzed by neuroblastoma-2a cell-based assay. Flesh samples were collected from the extraocular region (EM), head (HM), and different areas from the fillet (A-D). In the amberjack, the EM was the most toxic muscle (1.510 CTX1B Eq·g-1), followed by far for the caudal section of the fillet (D) (0.906 CTX1B Eq·g-1). In the dusky grouper flesh samples, D and EM showed the highest toxicity (0.279 and 0.273 CTX1B Eq·g-1). In both species, HM was one of the least toxic samples (0.421 and 0.166 CTX1B Eq·g-1). The liver stood out for its high CTX concentration (3.643 and 2.718 CTX1B Eq·g-1), as were the gonads (1.620 and 0.992 CTX1B Eq·g-1). According to these results, the caudal muscle next to the tail is a reliable part for use in determining the toxicity of fish flesh to guarantee its safe consumption. Additionally, the analysis of the liver and gonads could provide further information on doubtful specimens, and be used for CTX monitoring in areas with an unknown prevalence of ciguatera.


Assuntos
Bass , Intoxicação por Ciguatera , Ciguatoxinas , Animais , Ciguatoxinas/toxicidade , Ciguatoxinas/análise , Intoxicação por Ciguatera/epidemiologia , Peixes , Alimentos Marinhos/análise , Fígado/química
20.
Toxins (Basel) ; 15(3)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36977121

RESUMO

Published data were used to model the transfer of ciguatoxins (CTX) across three trophic levels of a marine food chain on the Great Barrier Reef (GBR), Australia, to produce a mildly toxic common coral trout (Plectropomus leopardus), one of the most targeted food fishes on the GBR. Our model generated a 1.6 kg grouper with a flesh concentration of 0.1 µg/kg of Pacific-ciguatoxin-1 (P-CTX-1 = CTX1B) from 1.1 to 4.3 µg of P-CTX-1 equivalents (eq.) entering the food chain from 0.7 to 2.7 million benthic dinoflagellates (Gambierdiscus sp.) producing 1.6 pg/cell of the P-CTX-1 precursor, P-CTX-4B (CTX4B). We simulated the food chain transfer of ciguatoxins via surgeonfishes by modelling Ctenochaetus striatus feeding on turf algae. A C. striatus feeding on ≥1000 Gambierdiscus/cm2 of turf algae accumulates sufficient toxin in <2 days that when preyed on, produces a 1.6 kg common coral trout with a flesh concentration of 0.1 µg/kg P-CTX-1. Our model shows that even transient blooms of highly ciguatoxic Gambierdiscus can generate ciguateric fishes. In contrast, sparse cell densities of ≤10 Gambierdiscus/cm2 are unlikely to pose a significant risk, at least in areas where the P-CTX-1 family of ciguatoxins predominate. The ciguatera risk from intermediate Gambierdiscus densities (~100 cells/cm2) is more difficult to assess, as it requires feeding times for surgeonfish (~4-14 days) that overlap with turnover rates of turf algae that are grazed by herbivorous fishes, at least in regions such as the GBR, where stocks of herbivorous fishes are not impacted by fishing. We use our model to explore how the duration of ciguatoxic Gambierdiscus blooms, the type of ciguatoxins they produce, and fish feeding behaviours can produce differences in relative toxicities between trophic levels. Our simple model indicates thresholds for the design of risk and mitigation strategies for ciguatera and the variables that can be manipulated to explore alternate scenarios for the accumulation and transfer of P-CTX-1 analogues through marine food chains and, potentially, for other ciguatoxins in other regions, as more data become available.


Assuntos
Antozoários , Bass , Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Animais , Ciguatoxinas/toxicidade , Ciguatoxinas/metabolismo , Bass/metabolismo , Alimentos Marinhos , Dinoflagelados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...